INTRODUCTION

The mismatch negativity (MMN) is a cortical response thought to index a sensory change in the environment. It has been claimed as an objective index of perception, due to its functional independence from voluntary attention. Auditory, visual, and somatosensory stimuli can evoke a MMN. Yet, there is no evidence of MMN evoked by nociceptive stimuli. The MMN has been advocated as a tool for assessing abnormal brain function in a large number of clinical conditions, except that for chronic pain conditions [1]. Therefore, since a pre-attentive electrophysiological index of nociceptive-related brain activity would benefit in both basic and clinical pain studies, we aimed to (i) identify a nociceptive MMN (nMMN) as compared to somatosensory MMN (sMMN) and to (ii) discriminate the cortical effects of mismatch against the effects of attention.

METHODS

Subjects. 15 healthy right-handed volunteers (8 females) aged 21±1.6 (mean ±SD).

Stimulation. Non-painful somatosensory (transcutaneous electrical stimulus, TES) [3] and painful nociceptive stimuli (intra-epidermal electrical stimuli, IES) [3] consisted of three rapidly succeeding constant-current square-wave pulses (0.5 ms and 12 ms inter-pulse interval) either delivered through a needle cathode pair of surface electrodes or through three concentric bipolar needle electrodes (a needle cathode surrounded by a cylindrical anode) [3].

EEG recording. Somatosensory and nociceptive evoked potentials (SEPs and NEPs) were recorded by concentric bipolar needle electrodes (a needle cathode surrounded by a cylindrical anode) [3].

EEG data. EEG data were segmented into epochs of 700 ms (200 ms pre-stimulus and 500 ms post-stimulus) according to the rhythm of nociceptive stimuli. EEG epochs of 700 ms (200 ms pre-stimulus and 500 ms post-stimulus) were created at 0.01-30 Hz. EEG epochs of 700 ms (200 ms pre-stimulus and 500 ms post-stimulus) were created at 0.01-30 Hz.

EEG epochs. EEG epochs of 700 ms (200 ms pre-stimulus and 500 ms post-stimulus) were created at 0.01-30 Hz.

EEG epochs. EEG epochs of 700 ms (200 ms pre-stimulus and 500 ms post-stimulus) were created at 0.01-30 Hz.

EEG epochs. EEG epochs of 700 ms (200 ms pre-stimulus and 500 ms post-stimulus) were created at 0.01-30 Hz.

REFERENCES

CONCLUSIONS

Only early negativities (100-250 ms) located at the bilateral temporal regions of the scalp revealed a selective modulation of mismatch regardless of attention (Fig. 3). The modulation of sMMN had earlier onset than the nMMN (110 ms vs. 182 ms) as well as a larger difference of latency between the contralateral and ipsilateral onset of the activity (52 ms vs. 4 ms). Altogether, these findings provide evidence that (1) a nMMN can be elicited by painful nociceptive stimuli [2] the nMMN is topographically similar to the sMMN while differing in latency and possibly in functional organization of their generators.

ACKNOWLEDGMENTS

Li Hu is supported by Southwest University. The authors declare no competing financial interests.